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University of California, Berkeley
Physics H7C Fall 2002 (Strovink)

FINAL EXAMINATION

Directions: Do all six problems, which have unequal weight. This is a closed-book closed-note
exam except for three 81

2 × 11 inch sheets containing any information you wish on both sides. You
may use a calculator. Laptops and palmtops should be turned off. Use at least one bluebook. Do not
use scratch paper – otherwise you risk losing part credit. Cross out rather than erase any work that
you wish the grader to ignore. Justify what you do. Express your answer in terms of the quantities
specified in the problem. Box or circle your answer.

Problem 1. (35 points).
An excited nucleus (A,Z)′, initially at rest, un-
dergoes the decay

(A,Z)′ → (A,Z) + γ ,

where (A,Z) is the ground state of the nu-
cleus. (A,Z) has mass M and (A,Z)′ has mass
M +∆M , where ∆M �M .
(a) (20 points)
Taking into account to lowest order the recoil of
the nucleus, compute the energy Eγ of the emit-
ted gamma ray. Specifically, your answer should
take the form

Eγ ≈ C1 ∆M
(
1− C2

∆M
M

)
,

where C1 and C2 are for you to supply.
(b) (15 points)
If the mean life τ of the excited nucleus is
sufficiently short, it will be possible for the emit-
ted gamma ray to be reabsorbed by a different
ground-state nucleus that is initially at rest, via
the reaction

γ + (A,Z) → (A,Z)′ .

Roughly how short does τ need to be?

Problem 2. (30 points).
A twisted nematic cell is the basic building
block of a a liquid crystal display (LCD). An
ideal twisted nematic cell with parameter α is
described by the Jones matrix

(
cosα sinα
− sinα cosα

)
.

In words, describe what it does to
(a) (4 points)
Light that is plane polarized in the x̂ direction.
(b) (4 points)
Light that is plane polarized in the direction
x̂ cosα+ ŷ sinα.
(c) (4 points)
Right-hand circularly polarized light.
(d) (4 points)
Left-hand circularly polarized light.
(e) (14 points)
In an ideal LCD, an unpolarized beam of light
passes through a sandwich consisting of a verti-
cal linear polarizer, a twisted nematic cell with
parameter α = π/2, and a horizontal linear po-
larizer. Then it reflects off a mirror and passes
back through the same sandwich. If all elements
are ideal, what fraction of the incident beam
irradiance emerges from the display?

Problem 3. (30 points).
If one wants to coat a block of glass so that
none of the (monochromatic) light that is nor-
mally incident upon it is reflected from the front
surface, one chooses an optical coating such that

l1 = λ1/4
n1 =

√
n0n2 ,

where l1 is the coating’s thickness, n1 is the
coating’s refractive index, λ1 is the wavelength
of light inside the coating, and n0 and n2 are
the refractive indices of the air and the glass,
respectively. (For this statement to be strictly
correct, the magnetic permeabilities of all three
media should be the same.)
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Now consider a nonrelativistic particle of mass
m, travelling in one dimension toward positive
x, that is incident on a rectangular potential
barrier at x = 0. That is,

V (x < 0) = 0
V (x > 0) = V0 ,

where V0 is a real positive constant. Choose the
particle’s energy E to be larger than V0. Clas-
sically, the particle will surmount the barrier.
Quantum mechanically, with nonzero probabil-
ity the particle will be reflected.

By analogy with the optical coating, show how
to “coat” the potential barrier so that the par-
ticle will have exactly zero probability of being
reflected. You may change neither the initial
energy E nor the final potential V0, nor may
you use potential segments that are anything
but rectangular in shape. Your answer should
take the form of a sketch of the modified barrier.
Please provide quantitative values for all rele-
vant dimensions in your sketch, both length(s)
and energies, expressed in terms of E, V0, m,
and fundamental constants.

Problem 4. (35 points).
When the potential V (r) vanishes within a spher-
ically symmetric region, the time-independent
Schroedinger equation for a particle of mass M
may be written

(
− h̄2

2M
∇2

r +
L2

2Mr2
)
u(�r ) = E u(�r ) ,

where ∇2
r is the radial part of ∇2 and �L is the

angular momentum operator. With the substi-
tution

u(�r ) ≡ r−1 W(r)Ylm(θ, φ) ,

the T.I.S.E. becomes

(
− h̄2

2M
∂2

∂r2
+

L2

2Mr2
)
W Ylm = EW Ylm .

(a) (20 points)

Consider the case in which l > 0, and focus on
very small r such that

h̄2

Mr2

 E .

In this region, show that, to a good approxima-
tion,

W(r) ∝ rb ,
where b depends on l; find b.
(b) (15 points)
For this spherically symmetric potential, consid-
ering the case l = 0 as well as l > 0, which
(if any) of the eigenfunctions u(�r ) are likewise
spherically symmetric? Azimuthally symmetric?
Same questions for the probability density asso-
ciated with these eigenfunctions? Explain your
reasoning.

Problem 5. (40 points).
Consider a number 2N0 of spin-32 identical
fermions (N0 is even). These particles have mass
m and move nonrelativistically in one dimen-
sion x. (Their motion in directions orthogonal
to x doesn’t vary in a way that is significant
for this problem, and may be ignored.) The
fermions do not have a significant mutual inter-
action, but they are under the influence of an
external potential

V (x) = 1
2mω

2
0x

2 ,

where ω0 is a real positive constant.
(a) (10 points)
What is the density of states ∆N/∆E, where
the possible values of E are the energy eigenval-
ues of the Hamiltonian?
(b) (10 points)
At temperature T = 0, taking V = 0 at x =
0, what is the energy of the most energetic
fermion?
(c) (20 points)
Suppose instead that a single nonrelativistic par-
ticle of any kind is trapped in this same potential
well (not necessarily at zero temperature). At
t = 0 the expectation value 〈x〉 of its position is
measured to be x0 (not necessarily at the ori-
gin). What is the earliest time at which 〈x〉
must again be equal to x0?
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Problem 6. (30 points).
A satellite of small mass (compared to a star)
is in circular orbit of radius R around an iso-
lated star of mass M , which is at rest at the
origin. It moves with a velocity � c (which you
need to compute). A laser on board the satellite
emits a pulse of light which, when observed in
the rest frame of the star, travels exactly in the
radial direction away from the star, in the plane
of the circular orbit. Eventually the light pulse
is detected by an isolated observer who is at rest
with respect to the star, but very far away from
it compared to R.

By the time it is detected, the light pulse will
have suffered a tiny redshift ∆λD due to the
satellite’s motion relative to the observer, plus
a tiny redshift ∆λG due to the star’s gravita-
tional field. To lowest order in small quantities,
calculate the ratio

ρ =
∆λG

∆λD
.


